Leetcode 870. Advantage Shuffle
You are given two integer arrays nums1
and nums2
both of the same length. The advantage of nums1
with respect to nums2
is the number of indices i
for which nums1[i] > nums2[i]
.
Return any permutation of nums1
that maximizes its advantage with respect to nums2
.
nums1
and nums2
unique?
The problem can be efficiently solved using a greedy approach with sorting:
nums1
in non-decreasing order.nums2
maintaining the original indices.nums1
can give an advantage over elements in nums2
.nums2
, and for each element, try to find the smallest element in nums1
that is greater.nums1
that can be used and the ones that cannot provide an advantage.Here’s the C++ code implementing the above strategy:
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
vector<int> advantageCount(vector<int>& nums1, vector<int>& nums2) {
int n = nums1.size();
// Sort nums1
sort(nums1.begin(), nums1.end());
// Create a pair of (value, index) for nums2
vector<pair<int, int>> sorted_nums2(n);
for (int i = 0; i < n; i++) {
sorted_nums2[i] = {nums2[i], i};
}
// Sort nums2 based on the value
sort(sorted_nums2.begin(), sorted_nums2.end());
// Result array
vector<int> result(n);
// Two pointers for nums1
int left = 0, right = n - 1;
// Try to maximize advantage
for (int i = 0; i < n; i++) {
if (nums1[left] > sorted_nums2[i].first) {
result[sorted_nums2[i].second] = nums1[left++];
} else {
result[sorted_nums2[i].second] = nums1[right--];
}
}
return result;
}
nums1
: (O(n \log n))nums2
: (O(n \log n))nums2
with two pointers: (O(n))The overall time complexity is dominated by the sorting steps: [ O(n \log n) + O(n \log n) + O(n) = O(n \log n) ]
This is efficient for the given problem constraints and provides an optimal solution.
Got blindsided by a question you didn’t expect?
Spend too much time studying?
Or simply don’t have the time to go over all 3000 questions?