You are given an integer array nums
and an integer k
. The k-or
of an array is defined as the bitwise OR of the largest k
elements in the array. Return the maximum k-or
of any subarray of length at least k
.
nums
and k
?
nums
can contain values which are integers, and k
is a positive integer.nums
have duplicate elements?
nums
.k
is larger than the length of the array?
To solve this problem, we can:
k
to find all subarrays.k
, calculate the k-or
by taking the bitwise OR of the largest k
elements.k-or
found during this traversal.Here’s a potential implementation in Java:
import java.util.Arrays;
import java.util.Collections;
import java.util.PriorityQueue;
public class Solution {
public int maxKOr(int[] nums, int k) {
if (nums == null || nums.length < k) {
return 0; // Or throw an exception.
}
int maxOr = 0;
// Sliding window approach, window size from k up to nums.length
for (int windowSize = k; windowSize <= nums.length; windowSize++) {
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
// Initial window
for (int i = 0; i < windowSize; i++) {
maxHeap.offer(nums[i]);
}
// Calculate k-or for the initial window
maxOr = Math.max(maxOr, calculateKOr(maxHeap, k));
// Slide the window across nums
for (int i = windowSize; i < nums.length; i++) {
maxHeap.offer(nums[i]);
maxHeap.remove(nums[i - windowSize]);
maxOr = Math.max(maxOr, calculateKOr(maxHeap, k));
}
}
return maxOr;
}
private int calculateKOr(PriorityQueue<Integer> maxHeap, int k) {
Integer[] largestK = maxHeap.toArray(new Integer[0]);
Arrays.sort(largestK, Collections.reverseOrder());
int kOr = 0;
for (int i = 0; i < k; i++) {
kOr |= largestK[i];
}
return kOr;
}
}
O(n * (n - k + 1))
.k-or
requires O(windowSize log windowSize + k log k)
operations.In the worst case, this could result in a relatively high time complexity, potentially O(n^2 log n)
. Optimizations might be necessary for very large inputs. For typical constraints, this approach should be efficient enough to handle the problem.
Got blindsided by a question you didn’t expect?
Spend too much time studying?
Or simply don’t have the time to go over all 3000 questions?