Implement the BSTIterator
class that represents an iterator over the in-order traversal of a binary search tree (BST):
BSTIterator(TreeNode root)
initializes an object of the BSTIterator
class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.boolean hasNext()
returns true
if there exists a number in the traversal to the right of the pointer, otherwise returns false
.int next()
moves the pointer to the right, then returns the number at the pointer.You may assume that next()
calls will always be valid. That is, there will be at least a next number in the in-order traversal when next()
is called.
Example:
Input:
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
Output:
[null, 3, 7, true, 9, true, 15, true, 20, false]
Explanation:
BSTIterator bstIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
bstIterator.next(); // return 3
bstIterator.next(); // return 7
bstIterator.hasNext(); // return True
bstIterator.next(); // return 9
bstIterator.hasNext(); // return True
bstIterator.next(); // return 15
bstIterator.hasNext(); // return True
bstIterator.next(); // return 20
bstIterator.hasNext(); // return False
TreeNode
class?To solve this problem, we’ll use a stack-based approach to simulate the controlled traversal of the BST in an iterative manner:
__init__
):
hasNext
Method:
next
Method:
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class BSTIterator:
def __init__(self, root: TreeNode):
self.stack = []
self._leftmost_inorder(root)
def _leftmost_inorder(self, root):
while root:
self.stack.append(root)
root = root.left
def next(self) -> int:
topmost_node = self.stack.pop()
if topmost_node.right:
self._leftmost_inorder(topmost_node.right)
return topmost_node.val
def hasNext(self) -> bool:
return len(self.stack) > 0
# Example usage:
# Construct the tree:
# 7
# / \
# 3 15
# / \
# 9 20
root = TreeNode(7)
root.left = TreeNode(3)
root.right = TreeNode(15)
root.right.left = TreeNode(9)
root.right.right = TreeNode(20)
# Create the iterator
iterator = BSTIterator(root)
print(iterator.next()) # return 3
print(iterator.next()) # return 7
print(iterator.hasNext()) # return True
print(iterator.next()) # return 9
print(iterator.hasNext()) # return True
print(iterator.next()) # return 15
print(iterator.hasNext()) # return True
print(iterator.next()) # return 20
print(iterator.hasNext()) # return False
next
and hasNext
operations is O(1)
, although in the worst case, next
can be O(h)
where h
is the height of the tree. This is because each node is pushed and popped from the stack exactly once.BSTIterator
is O(h)
where h
refers to the height of the tree, since the stack holds at most all the nodes along a path from the root to the deepest leaf.Got blindsided by a question you didn’t expect?
Spend too much time studying?
Or simply don’t have the time to go over all 3000 questions?